Integral deferred correction methods constructed with high order Runge-Kutta integrators

نویسندگان

  • Andrew J. Christlieb
  • Benjamin W. Ong
  • Jing-Mei Qiu
چکیده

Spectral deferred correction (SDC) methods for solving ordinary differential equations (ODEs) were introduced by Dutt, Greengard and Rokhlin [5]. It was shown in [5] that SDC methods can achieve arbitrary high order accuracy and possess nice stability properties. Their SDC methods are constructed with low order integrators, such as forward Euler or backward Euler, and are able to handle stiff and non-stiff terms in the ODEs. In this paper, we use high order Runge-Kutta (RK) integrators to construct a family of related methods, which we refer to as integral deferred correction (IDC) methods. The distribution of quadrature nodes is assumed to be uniform and the corresponding local error analysis is given. The smoothness of the error vector associated with an IDC method, measured by the discrete Sobolev norm [8, 18], is a crucial tool in our analysis. The expected order of accuracy is demonstrated through several numerical examples. Superior numerical stability and accuracy regions are observed when high order RK integrators are used to construct IDC methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comments on High Order Integrators Embedded within Integral Deferred Correction Methods

Spectral deferred correction (SDC) methods for solving ordinary differential equations (ODEs) were introduced by Dutt, Greengard and Rokhlin, [3]. In this paper, we study the properties of these integral deferred correction methods, constructed using high order integrators in the prediction and correction loops, and various distributions of quadrature nodes. The smoothness of the error vector a...

متن کامل

Semi-implicit Integral Deferred Correction Constructed with Additive Runge-kutta Methods

In this paper, we consider construct high order semi-implicit integrators using integral deferred correction (IDC) to solve stiff initial value problems. The general framework for the construction of these semi-implicit methods uses uniformly distributed nodes and additive RungeKutta (ARK) integrators as base schemes inside an IDC framework, which we refer to as IDC-ARK methods. We establish un...

متن کامل

Parallel High-Order Integrators

In this work we discuss a class of defect correction methods which is easily adapted to create parallel time integrators for multi-core architectures and is ideally suited for developing methods which can be order adaptive in time. The method is based on Integral Deferred Correction (IDC), which was itself motivated by Spectral Deferred Correction by Dutt, Greengard and Rokhlin (BIT-2000). The ...

متن کامل

On the Spectral Deferred Correction of Splitting Methods for Initial Value Problems

Spectral deferred correction is a flexible technique for constructing high-order, stiffly-stable time integrators using a low order method as a base scheme. Here we examine their use in conjunction with splitting methods to solve initial-boundary value problems for partial differential equations. We exploit their close connection with implicit Runge–Kutta methods to prove that up to the full ac...

متن کامل

A comparison of high-order explicit Runge–Kutta, extrapolation, and deferred correction methods in serial and parallel

Citation A comparison of high-order explicit Runge–Kutta, extrapolation, and deferred correction methods in serial and We compare the three main types of high-order one-step initial value solvers: extrapolation, spectral deferred correction, and embedded Runge–Kutta pairs. We consider orders four through twelve, including both serial and parallel implementations. We cast extrapolation and defer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2010